Suppose x−y=1.x−y=1. Find the value of x4−xy3−x3y−3x2y+3xy2+y4.x4−xy3−x3y−3x2y+3xy2+y4.
Answer:
11
- Given x−y=1x−y=1
We need to find the value of x4−xy3−x3y−3x2y+3xy2+y4.x4−xy3−x3y−3x2y+3xy2+y4. - [Math Processing Error]
- Hence, the value of the given expression is 1.